All Research

Research Area

Clinical Decision Support

Developing AI-assisted tools that complement human expertise in clinical settings, with rigorous evaluation of real-world impact.

Overview

As AI systems are increasingly deployed in clinical settings, rigorous evaluation methods are essential to ensure these tools genuinely improve patient outcomes. Our research focuses on developing and testing AI-assisted clinical decision support systems that complement—rather than replace—human expertise.

Key areas of investigation include:

  • Clinician-in-the-loop AI: Understanding how clinicians interact with AI recommendations and designing interfaces that support appropriate trust calibration
  • Soft ground truth methods: Developing statistical approaches for evaluating AI when gold-standard labels are uncertain
  • Implementation science: Studying how workflow integration, training, and population factors affect AI effectiveness
  • Equity evaluation: Ensuring clinical AI performs equitably across demographic groups

Related Publications

View all publications

Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review

Adhikari, S. P., Meng, S., Wu, Yuju, Mao, Yu-Ping, Ye, R., Wang, Qingzhi, Sun, Chang, Sylvia, Sean Yuji, Rozelle, S., Raat, H., Zhou, Huan (2020)

Infectious Diseases of Poverty

DOI: 10.1186/s40249-020-00646-x

Violence against health care workers in China, 2013–2016: evidence from the national judgment documents

Cai, Ruilie, Tang, Ji, Deng, Chenhui, Lv, Guofan, Xu, Xiaohe, Sylvia, Sean Yuji, Pan, Jay (2019)

Human Resources for Health

DOI: 10.1186/s12960-019-0440-y

Explaining the declining utilization of village clinics in rural China over time: A decomposition approach.

Chen, Yunwei, Sylvia, Sean Yuji, Wu, P., Yi, Hongmei (2022)

Social Science & Medicine (1967)

DOI: 10.1016/j.socscimed.2022.114978

Structural Determinants of Child Health in Rural China: The Challenge of Creating Health Equity

Chen, Yunwei, Sylvia, Sean Yuji, Dill, Sarah-Eve, Rozelle, S. (2022)

International Journal of Environmental Research and Public Health

DOI: 10.3390/ijerph192113845

Effect of an mHealth-Supported Healthy Future Programme to Improve Type 2 Diabetes Management in Nairobi, Kenya: A Cluster Randomised Controlled Trial

Chen, Huanhuan, Ndegwa, Stephen, Kwaro, Daniel, Otieno, Walter, Oyugi, Elizabeth, Sylvia, Sean (2023)

The Lancet Global Health

Evaluation of a village-based digital health kiosks program: A protocol for a cluster randomized clinical trial

Cheng, Weibin, Zhang, Z., Hoelzer, Samantha, Tang, Weiming, Liang, Yizhi, Du, Yumeng, Xue, Hao, Zhou, Qiru, Yip, W., Ma, Xiaochen, Tian, Junzhang, Sylvia, Sean Yuji (2022)

Digital Health

DOI: 10.1177/20552076221129100

Global health development assistance remained steady in 2013 but did not align with recipients' disease burden.

Dieleman, J., Graves, Casey M, Templin, Tara, Johnson, Elizabeth K, Baral, R., Leach-Kemon, Katherine, Haakenstad, Annie, Murray, C. (2014)

Health Affairs

DOI: 10.1377/hlthaff.2013.1432

Spending on health and HIV/AIDS: domestic health spending and development assistance in 188 countries, 1995–2015

Dieleman, J., Haakenstad, Annie, Micah, A., Moses, Mark W, Abbafati, C., Acharya, P., Adhikari, Tara Ballav, Adou, A. K., Kiadaliri, Aliasghar Ahmad, Alam, K., Alizadeh-Navaei, Reza, Alkerwi, A., Ammar, W., Antonio, C., Aremu, O., Asgedom, S. W., Atey, T., Ávila-Burgos, L., Awasthi, A., Ayer, R., Badali, H., Banach, M., Banstola, A., Barać, A., Belachew, A., Birungi, C., Bragazzi, N., Breitborde, N., Cahuana-Hurtado, Lucero, Car, J., Catalá-López, F., Chapin, Abigail, Dandona, L., Dandona, R., Daryani, A., Dharmaratne, S., Dubey, M., Edessa, Dumessa, Eldrenkamp, Erika, Eshrati, B., Faro, Andre, Feigl, A., Fenny, A., Fischer, F., Foigt, N., Foreman, Kyle, Fullman, N., Ghimire, M., Goli, Srinivas, Hailu, A., Hamidi, S., Harb, H., Hay, Simon Iain, Hendrie, D., Ikilezi, G., Javanbakht, Mehdi, John, D., Jonas, J., Kaldjian, A., Kasaeian, A., Kates, J., Khalil, I., Khang, Y., Khubchandani, J., Kim, Y., Kinge, J., Kosen, S., Krohn, Kristopher J., Kumar, G., Lam, H., Listl, S., Razek, H. Magdy Abd El, Razek, M. Magdy Abd El, Majeed, A., Malekzadeh, R., Malta, D., Mensah, G., Meretoja, A., Miller, T., Mirrakhimov, E., Mlashu, Fitsum Weldegebreal, Mohammed, Ebrahim, Mohammed, S., Naghavi, M., Nangia, V., Ngalesoni, F., Nguyen, C., Nguyen, T. H., Niriayo, Y., Noroozi, M., Owolabi, M., Pereira, David M, Qorbani, M., Rafay, Anwar, Rafiei, A., Rahimi-Movaghar, V., Rai, R., Ram, U., Ranabhat, C., Ray, S. E., Reiner, R., Sadat, Nafis, Sajadi, Haniye Sadat, Santos, J., Sarker, A., Sartorius, B., Satpathy, Maheswar, Savic, M., Schneider, Matthew T., Sepanlou, S., Shaikh, M., Sharif, M., She, Jun, Sheikh, A., Sisay, M., Soneji, S., Soofi, M., Tadesse, H., Tao, Tianchan, Templin, Tara, Tesema, A., Thapa, S., Thomson, A., Tobe-Gai, Ruoyan, Topor-Madry, R., Tran, B., Tran, Khanh B., Tran, T., Undurraga, E., Vasankari, T., Violante, F., Wijeratne, T., Xu, Gelin, Yonemoto, N., Younis, M., Yu, Chuanhua, Zaki, M., Zhou, Lei, Zlavog, Bianca S., Murray, C. (2018)

The Lancet

DOI: 10.1016/S0140-6736(18)30698-6

Collaborate With Us

We're always looking for research partners, health system collaborators, and clinical sites to advance our work in clinical AI evaluation.

Get in Touch